

Corsham Technologies, LLC

www.corshamtech.com

617 Stokes Road, Suite 4-299

Medford, NJ 08055

6809 CPU Board

Introduction

Thank you for buying our 6809 CPU board!

This was a big project, and definitely the most complicated hardware project we’ve

done so far. At the Vintage Computer Festival Midwest in 2014, I had our first SS-50

products on display and received a warm welcome. However, a lot of people said

they really wanted a 6809 based board, so this is the result of all those requests.

Is this board vintage? Well, work started in 2014, so technically it is not. However,

it uses a design very similar to the original SWTPC 6809 CPU board using parts

available at that time. The large RAM and EPROMs are not vintage, particularly the

128K RAM chip. The board is vintage in that it uses the SS-50 bus and can plug into

existing systems or work with other boards of that era.

Using older parts has been a problem because some of them have not been made in

a long time, so prices are high, conditions of pulled chips are unknown, and we have

to test a lot more components to verify they actually work as expected. Fortunately

all the chips on this board are available from surplus inventories, but eventually

they will be unavailable.

Features

• 6809 running at 2 MHz.

• Baud rate generator provides all standard SS-50/SS-30 clocks.

• One baud rate line can be jumpered for higher speed options.

 - 2 -

• 2K or 4K of EPROM. SBUG uses 2K, but the other 2K can be enabled for user

extensions.

• Dynamic Address Translation that is fully compatible with SWTPC’s scheme.

• 128K of RAM, fixed in banks 0 and 1. Each 8K chunk can be enabled/disabled.

• A16 to A19 available on the SS-50 bus, individually selectable.

Reset and NMI

In the upper left hand corner of the board is a reset pushbutton switch along with

jumpers JP1 (RESET) and JP9 (NMI). These two jumpers can be wired to external

buttons on the chassis to provide reset and NMI signals to the processor.

Baud Rate Selection

The SS-50 bus used five lines for baud rate clocks, while the SS-50C bus allowed

those lines to be used for either those clocks or the extended addressing lines A16 to

A19. Our board allows individual jumper selection for each pin using five jumpers

located on the lower left hand corner of the board:

Bus Pin Jumper SS-50 (6800) Use SS-50C (6809) Use

46 JP2 110 baud 110 baud or BUSRQ

47 JP13 150 baud 150 baud or A19

48 JP12 300 baud 300 baud or A18

49 JP11 600 baud 600 baud or A17

50 JP10 1200 baud 1200 baud or A16

Note that the baud clocks are actually x16, that is, they are 16 times faster than the

indicating baud.

Because we didn’t want to tie up all those pins, our board is optimized to use pin 46,

normally the 110 baud line, as a VARiable baud rate line. You’ll see JP2 allows you

to select either BUSRQ or VAR, and jumper J6 allows you to configure this line as

1200, 2400, 4800 or 9600 baud.

Phew, that’s a lot of options, and might not be very clear at all, so here is our

recommendation on how to set up those six jumpers to five you a desired baud rate

and also the full 20 bits of address space:

 - 3 -

Jumper Suggested setting Result

JP10 A16 Gives 17 bit addressing

JP11 A17 Gives 18 bit addressing

JP12 A18 Gives 19 bit addressing

JP13 A19 Gives 20 bit addressing

JP2 VAR Makes the 110 line one of

four selectable baud rates

JP6 (VAR) Your choice Select this to provide your

designed console baud

rate setting. We use 2400.

EPROM

The original SWTPC 6809 board had a 2K EPROM with SBUG in the top of memory,

from F800 to FFFF, along with additional EPROM sockets. Our board has a single 8K

EPROM and the user can select to use just the top 2K for SBUG or the top 4K for an

extended monitor or other applications. For vintage computer shows we tend to

use an EPROM with a Tiny BASIC interpreter in the lower 2K so people can write

programs in BASIC, or include drivers for our SD Card System, but that lower 2K can

be used for whatever you want.

Prior to rev 4 boards, switch SW3 (EPROM SIZE) is located along the lower portion

of the board and can be set to 2K or 4K. Rev 4 boards have a jumper labeled JP3

which performs the same function. Since this is a little used option, the jumper

might not be physically installed.

If you wish to burn your own EPROM, this is where things are in it:

The first 4K is completely unused and is not visible. The upper 4K is mapped to

F000-FFFF.

Offset 0000

Offset 1000

Offset 1800 At address F800

At address F000 if SW3 is set

to 4K, not present in 2K

Lower 4K is never mapped

to memory

 - 4 -

RAM

The board has 128K of RAM available but must be configured via SW1 and SW1 on

the upper left hand side of the board.

Banks 0 and 1 are controlled by two 8 position DIP switches. A recommended

setting is to turn on the “0XXX” to “CXXX” switches for each bank. Do not turn on the

EXXX switch! Please reference the Dynamic Address Translation section for a better

explanation of how this works.

Dynamic Address Translation

You don’t really need to read this section unless you plan on writing software that

uses the extended memory, in which case it’s good to understand how SWTPC

mapped 1 MB of address space into a processor with only 64K of address space.

They did this with Dynamic Address Translation, or DAT. DAT uses 16 RAM

locations to map a 16 bit address from the processor into a 20 bit address space.

The top four address lines (A12 to A15) are used as address select lines to 16 bytes

of memory. The lower 4 bits of each address map to A12 through A15. The upper 4

bits are A16 to A19.

The top page of memory (FF00 to FFFF) is always mapped to the top 256 bytes of

the EPROM. When SBUG starts, it loads up the DAT registers to map 56K of memory

from 0000 to DFFF.

Addresses FFF0 to FFFF are the write-only DAT registers. If you read those locations

you’ll get the contents of EPROM, not the DAT registers. Each register maps one 4K

block of memory:

Address Block Default value

FFF0 0xxx 0F

FFF1 1xxx 0E

FFF2 2xxx 0D

FFF3 3xxx 0C

FFF4 4xxx 0B

FFF5 5xxx 0A

FFF6 6xxx 09

FFF7 7xxx 08

FFF8 8xxx 07

FFF9 9xxx 06

FFFA Axxx 05

 - 5 -

FFFB Bxxx 04

FFFC Cxxx 03

FFFD Dxxx 02

FFFE Exxx 01

FFFF F000 00

That’s as clear as mud, right? Okay, the value written into the registers is the

inverse of the value for the lower 4 bits, and the true value fro the upper 4 bits. Still

not clear, I know, so let’s take an example:

FFF0 0xxx 0F

The value 00001111 (binary) is written into the register. When the upper four bits

of the address (A12 to A15) are 0000, the entry above is used. The inverse of the

lower four bits of DAT register at FFF0 is 0000 (since it has 00001111). So the

values for A12 to A15 put onto the bus will be 0000.

So how do we use that? Well, let’s assume you want to load and use two programs

that are both start at address 0000 hex. You can select bank 0’s memory by writing

0F to FFF0 and load the first program.

Now there are multiple ways to put another block of memory at address 0xxx. You

can map another block from bank zero, such as moving the memory currently at

8000 down to 0000 by writing 07 hex to FFF0. The inverse of 7 (0111) is 8 (1000),

so now when any address with 0000 as the top four bits is selected, the top four bits

put onto the address bus will be 1000.

Another way is to use bank 1 so that all of bank 0’s memory remains in place. To do

this, put the value 0001 in the top 4 bits by writing 1F to FFF0. Now bank 1 will be

selected for all 0xxx addresses.

Load up your second program to 0000 and you’re set! To select the initial program

again, write 0F to FFF0.

Switches SW1 and SW2 allow you to enable/disable a given block of the on-board

RAM. Each position is labeled with a bank number, a period, and then a base

address such as 0.0xxx and 1.6xxx. Moving the switch to the on position will enable

that bank. If you select a bank that is disabled, it won’t respond.

Summary of Jumpers and Switches

 - 6 -

There are a number of jumpers and switches on the board that change the behavior.

While many of them are discussed in other sections of the manual, here is a

summary:

Label Use

JP1 External RESET button connection. Short these

two pins together to force a reset.

JP2 Chooses the pin connected to SS-50C bus line 46.

It can be set to either VAR to select the baud rate

from JP6, or BUSRQ to put the BUSRQ signal

onto the bus.

JP3 Rev 4 boards: Selects if the EEPROM covers

F000 to FFFF (jumper not installed) or F800 to

FFFF (if installed).

JP4

JP5

JP6 VAR – This jumper block should have no more

than one jumper installed to select the desired

baud rate for the VAR line. Currently available

baud rates are 1200, 2400, 4800 and 9600. The

actual speed of these lines are 16 times faster.

JP7

JP8

JP9 External NMI button connection. Short these

two pins together to force a non maskable

interrupt (NMI).

JP10 Selects the signal present on SS-50C pin 50. Can

be the 300 baud (x16) clock or A16.

JP11 Selects the signal present on SS-50C pin 49. Can

be the 600 baud (x16) clock or A17.

JP12 Selects the signal present on SS-50C pin 48. Can

be the 1200 baud (x16) clock or A18.

JP13 Selects the signal present on SS-50C pin 47. Can

be the output from the JP VAR jumper block or

A19.

SW1 Used to select which segments in memory bank

1 are active using on-board RAM. The switch

labeled 1.EXXX must always remain off.

SW2 Used to select which segments in memory bank

0 are active using on-board RAM. The switch

labeled 0.EXXX must always remain off.

SW3 Prior to rev 4 boards, selects the available size of

the EPROM. It can be set to either 2K or 4K.

 - 7 -

Initial Terminal Settings

8N2. Eight data bits, no parity and two stop bits.

SBUG/EEPROM

The contents of the EPROM with any given board might change over time, but we

always include a version of SBUG, which was SWTPC’s 6809 debugger and mini

command line interface. Documentation for it is easily found on-line. Source code

for our version can be found on the www.corshamtech.com website, along with the

assembly listing showing which options were built.

TINY BASIC

If your EPROM has a label that has “TINY BASIC” on it, then there are two commands

for doing a cold start and warm start to BASIC:

• ! = Cold start BASIC. Do this first.

• @ = Warm start BASIC.

Do a cold start first, then you’ll be able to write simple programs using a Tiny BASIC

dialect. The BASIC was slightly reworked to make it fit into the bottom 2K of the 4K

EPROM on the board. It has one new command (“!”) which exits back to SBUG. You

can re-enter BASIC with the “@” command, which keeps all variables and your

BASIC programs intact.

SD UTILS

More recently, we’ve been installing our low-level drivers for the SD Card System

into the EPROM, along with adding a “B” (Boot) command in SBUG. The B command

will load the first sector from drive 0 into memory at C100, then jump to it. We

provide a version of 6809 FLEX that can be run directly from the B command.

¡Viva Fiesta!

All of our circuit boards have something unusual on them, and since SWTPC was in

San Antonio, it seemed the city would make for some interesting additions.

Fortunately, I have a friend who is a native of San Antonio, so I asked her for some

ideas or else I’d resort to Googling for something appropriate. She said that ¡Viva

Fiesta! is a big festival held in San Antonio each year, so that seemed like a good

 - 8 -

choice. I was also excited about this board, so the exclamation points fit into my

enthusiasm for this project.

 - 9 -

Revision History

Version Changes

A Initial Beta.

1 Initial release

2 Not released

3 Most common board shipped for several years

4 Replaced SW3 with JP3. Fixed IC4 on the schematic and board to

properly show it is a 74LS244 device. Added more silkscreen

information to identify pins on the SS-50 bus.

Errata

REV 1 through REV 3: Incorrect Chip

IC4 is incorrectly identified as a 74LS241 on both the schematic and PC board. The

device is actually a 74LS244.

REV 1 Resistor Value Change

Rev 1 boards had an R4 value of 2.2k ohms, but that value is now changed to 680

ohms. The problem manifests itself as odd RAM issues.

Updating Rev 1 PC Boards

Users who buy assembled boards do not need to do any of these steps, as they were

applied when we built your board. For someone building from a bare board, these

steps will ensure the extended memory works properly. Without the mods, the

board functions except that writes to the DAT registers will result in memory

corruption. I.e., if you only use the base 64K RAM then none of these mods are

needed.

To perform the modifications, you will need a sharp hobby knife to cut some traces,

some #30 wire, a stripper for the wire, and a soldering iron. It is recommended that

all cuts be made prior to installing any components, as at least one trace is obscured

once an IC socket is installed, necessitating several more cuts and jumpers.

 - 10 -

Cuts

1. Cut trace on IC6 between pins 30 and 32 (bottom side) close to pin 30 (leave

trace from pin 32 to IC7 pins 1 and 28.

2. Cut trace between IC4 pin 19 and IC20 pin 7 (bottom).

3. On top of board, cut short trace from IC4 pin 19 to the via immediately

adjacent to it.

4. On bottom, cut trace from IC4 pin 13 to ground.

5. Locate IC10. On top, between pins 6 and 7, and 8 and 9 is a trace. Cut that

trace. It does not matter if it is cut above or below IC10. Follow the trace

down to a via right above SS-50 pin30. You’ll need to know where this pad is

for the next step.

Jumpers (install IC sockets before doing these)

1. On the bottom of the board, solder a wire from IC4 pin 7 to the pad located in

the previous step. Verify continuity from IC4 pin 7 to SS-50 pin 41.

2. Install jumper on bottom side from IC6 pin 30 to IC14 pin 8.

3. Install jumper from IC4 pin 19 to IC15 pin 1.

4. Install jumper from IC4 pin 13 to pin 14 (adjacent pins).

5. On bottom, install jumper from IC4 pin 1 to IC20 pin 7.

New Part

1. Install a 6.8K resistor on bottom side of board on IC1 between pins 7 and 32.

Parts List

Part Number Description

PCB 1 Printed Circuit Board (Corsham Tech)

J1 5 Molex 09-52-3101

 - 11 -

JP1, JP9 2 1x2 jumper block

JP2, JP10-13 4 1x3 jumper block

JP6 1 2x4 jumper block

S1 1 4 pin SPST pushbutton

SW1, SW2 2 8 position DIP switch

SW3 1 1 position DIP switch – Not present on Rev 4

C1 1 220uf, 25v electrolytic capacitor

C2-6, C8-11 9 .1 uf disc capacitor

C7, C14 1 22pf

C12, C13 2 1.5uf, 10v electrolytic capacitor

C15, C17 2 .47uf tantalum

C16, C18 2 .01uf

C21 1 100pf

R1, R2, R6, R7 4 1M ¼ watt

R3, R5 2 1K

R4 1 680

R8-10 3 10K

R11 1 220

R12 1 470

R13, R14 2 6.8K

X1 1 1.8432 MHz crystal

X2 1 8 MHZ crystal

LED1 1 3mm LED (usually red, but does not matter)

VR1 1 7805 +5 VDC regulator, TO-220 case

IC1 1 MC68B09 CPU

IC2, IC3, IC4 3 74LS244 (see errata)

IC5, IC11 2 74LS240

IC6 1 628128 128K SRAM

IC7 1 27C64 EPROM

IC8 1 74159

IC9 1 74LS640

IC10 1 74LS10

IC12 1 74LS157

IC13 1 LM556

IC14 1 74LS30

IC15 1 74LS02

IC16 1 MC14411

IC17 1 74LS00

IC18, IC19 2 74LS189

IC20 1 74LS32

IC21 1 74LS74

 7 14 pin IC sockets for IC10, IC13-15, IC17, IC20, IC21

 3 16 pin IC sockets for IC12, IC18, IC19

 6 20 pin IC sockets for IC2-5, IC9, IC11

 2 24 pin wide IC socket for IC16, IC8

 1 28 pin IC sockets for IC7

 - 12 -

 1 32 pin IC socket for IC6

 1 40 pin socket for IC1

